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Green’s functions for ground involve highly oscillatory integrands 

Sommerfeld integrals are usually integrated on the real axis with deformation 
around singularities and terminated with a convergence acceleration method 
such as weighted averages. 

When ρ is large integration from 0 to kb is difficult due to many oscillations 
of the Bessel function and the contour forced close to the singularities. 

Contour: 



Filon’s method incorporates oscillations into the integration rule 

Function f(kρ) is approximated with piece-wise quadratics and the product 
with the oscillating function integrated analytically 

Will need fs’ and fs” 

Filon Hankel transform: Barakat and Parshall, Appl. Math. Lett., 1996   

Subinterval 

L. Filon, Proc. Roy. Soc. Edinburgh 49, 38-47, 1928 



For Filon’s method the integral is integrated by parts twice 

For Filon, substitute the quadratic approximation and integrate by parts twice 

The first limit terms cancel between subintervals, so are dropped for now 

P0 



The J1 integrals are handled the same way 

For Filon, substitute the quadratic approximation and integrate by parts twice 

Dropping the first limit term, will evaluate 

P1 



The integrals can be evaluated as Bessel and Struve functions 

Hn(z) = Struve function (Wolfram Research, Mathematica) 



For numerical evaluation use series and asymptotic approximations 

For |z| < 18 integrate terms of the J0 series and sum 

For |z| > 18 use the J, H form with the asymptotic approximation for H 
and the J, Y Wronskin to eliminate cancelling terms 

(Abramowitz and Stegun) 



Relative errors in Pn integrals are < 10-8 

Series for |z| < 18 

Asymptotic for |z|>18 



Filon error for the Hankel transform was determined empirically 

Estimated integral: 

Estimated error: 

Estimated relative error: 

The behavior changes for 

With a 5-point subinterval  (2 Simpson panels) 



Error was tested for the Sommerfeld Identity integral: ρ = 102 

ρ = 102	

 Δkρ = 4 h = length of 5-point subinterval	

Relative error 

Error reference: Mathematica, NIntegrate 



Error was tested for the Sommerfeld Identity integral: ρ = 104 

ρ = 104	

Relative Error 



Error was tested for the Sommerfeld Identity integral: ρ = 106 

ρ = 106	

Relative Error 

If Filon does not meet the error test by ρΔkρ = π, Patterson’s adaptive algorithm 
is used for the subinterval 

(T.N.L Patterson, Communications ACM, pp. 694-699, Nov. 1973) 



Error vs kρ is demonstrated for the Sommerfeld Identity integral 

Relative errors: 
Sommerfeld Identity: 8.3(10-8) 
Filon int. only: 8.2(10-5), goal: 10-4 

Patterson only: 1.4(10-10), goal 10-6 

Base: kρ = 0 to 8.28 + WA tail 
ρ = 104	





Filon and Patterson integration for the SI are compared vs ρ	



For the Sommerfeld Identity: 

The number of evaluations using Patterson increases linearly with ρ 

Filon increases more slowly 



       on a half-space was compared with an asymptotic approx. 

2nd order asymptotic + pole, no 2nd BC 



On a dielectric slab the surface wave poles dominate at large ρ 

Branch pts.: kr = 2π,  8.886 

SW poles: kr = 8.901, 13.338, 16.736 



Conclusions 

§  The Filon/Patterson integration needs much fewer evaluations than  
   Patterson only for large ρ  

§  The number of function evaluations could be reduced further by: 

•  Use a global rather than local relative error test 
•  Extract surface wave poles 
•  Use an scheme such as interpolation to reduce the number 
      of integral evaluations 


